207 research outputs found

    N-body gravitational and contact dynamics for asteroid aggregation

    Get PDF
    The development of dedicated numerical codes has recently pushed forward the study of N-body gravitational dynamics, leading to a better and wider understanding of processes involving the formation of natural bodies in the Solar System. A major branch includes the study of asteroid formation: evidence from recent studies and observations support the idea that small and medium size asteroids between 100 m and 100 km may be gravitational aggregates with no cohesive force other than gravity. This evidence implies that asteroid formation depends on gravitational interactions between different boulders and that asteroid aggregation processes can be naturally modeled with N-body numerical codes implementing gravitational interactions. This work presents a new implementation of an N-body numerical solver. The code is based on Chrono::Engine (2006). It handles the contact and collision of large numbers of complex-shaped objects, while simultaneously evaluating the effect of N to N gravitational interactions. A special case of study is considered, investigating the relative dynamics between the N bodies and highlighting favorable conditions for the formation of a stable gravitationally bound aggregate from a cloud of N boulders. The code is successfully validated for the case of study by comparing relevant results obtained for typical known dynamical scenarios. The outcome of the numerical simulations shows good agreement with theory and observation, and suggests the ability of the developed code to predict natural aggregation phenomena

    Voluntary Pilot Action Through Biodynamics for Helicopter Flight Dynamics Simulation

    Get PDF
    This work presents the integration of detailed models of a pilot controlling a helicopter along the heave axis through the collective control inceptor. The action on the control inceptor is produced through a biomechanical model of the pilot’s limbs, by commanding the activation of the related muscle bundles. Such activation, in turn, is determined by defining the muscle elongations required to move the control inceptor in order to obtain the control of the vehicle according to a high-level model of the voluntary action of the pilot acting as a regulator for the vehicle. The biomechanical model of the pilot’s limbs and the aeromechanical model of the helicopter are implemented in a general-purpose multibody simulation. The helicopter model, the biomechanical model of the pilot’s limbs, the cognitive model of the pilot, and their integration are discussed. The integrated model is applied to the simulation of simple, yet representative, mission task elements

    Projection continuation for minimal coordinate set formulation and singularity detection of redundantly constrained system dynamics

    Get PDF
    The formulation of (possibly redundantly) constrained system dynamics using coordinate projection onto a subspace locally tangent to the constraint manifold is revisited using the QR factorization of the constraint Jacobian matrix, using column pivoting to identify a suitable subspace, possibly detect any singular configurations that may arise, and extract it. The evolution of the QR factorization is integrated along with that of the constraint Jacobian matrix as the solution evolves, generalizing to redundant constraints a recently proposed true continuation algorithm that tracks the evolution of the subspace of independent coordinates. The resulting subspace does not visibly affect the quality of the solution, as it is merely a recombination of that resulting from the blind application of the QR factorization but avoids the artificial algorithmic irregularities or discontinuities in the generalized velocities that could otherwise result from arbitrary reparameterizations of the coordinate set, and identifies and discriminates any further possible motions that arise at singular configurations. The characteristics of the proposed subspace evolution approach are exemplified by solving simple problems with incremental levels of redundancy and singularity orders

    Frustrated Total Internal Reflection Measurement System for Pilot Inceptor Grip Pressure

    Get PDF
    Sensing the interaction between the pilot and the control inceptors can provide important information about the pilot’s activity during flight, potentially enabling the objective measurement of the pilot workload, the application of preventive actions against loss of situational awareness, and the identification of the insurgence of adverse couplings with the vehicle dynamics. This work presents an innovative pressure-sensing device developed to be seamlessly integrated into the grips of conventional aircraft control inceptors. The sensor, based on frustrated total internal reflection of light, is composed of low-cost elements and can be easily manufactured to be applicable to different hand pressure ranges. The characteristics of the sensor are first demonstrated in laboratory calibration tests. Subsequently, applications in flight simulator testing are presented, focusing on the objective representation of the pilot’s instantaneous workload

    Helicopter Rotor Sailing by Non-Smooth Dynamics Co-Simulation

    Get PDF
    This paper presents the application of a co-simulation approach for the simulation of frictional contact in general-purpose multibody dynamics to a rotorcraft dynamics problem. The proposed approach is based on the co-simulation of a main problem, which is described and solved as a set of differential algebraic equations, with a subproblem that is characterized by nonsmooth dynamics events and solved using a timestepping technique. The implementation and validation of the formulation is presented. The method is applied to the analysis of the droop and anti-flap contacts of helicopter rotor blades. Simulations focusing on the problem of blade sailing are conducted to understand the behavior and assess the validity of the method. For this purpose, the results obtained using a contact model based on Hertzian reaction forces at the interface are compared with those of the proposed approach

    Helicopter Kit

    Get PDF
    A kit (1) for a helicopter (2) is described, the helicopter (2) comprising a fuselage (3) and a rotor (4); the kit (1) comprises at least one device (15) adapted to dampen the vibrations transmitted from the rotor (4) to the fuselage (2) and to be interposed between the fuselage (2) and the rotor (4); the device (15), in turn, comprises a first threaded element (21; 20) operatively connectable to the rotor (4) and adapted to, in use, vibrate parallel to a first axis (B); a second threaded element (20; 21) operatively connectable to the fuselage (4) and operatively connected to the first threaded element (21; 20) so as to, in use, rotationally vibrate about the first axis (B); and a plurality of threaded rollers (22), which are screwed on the first and second threaded elements (21, 20; 20, 21); the rollers (22) being rotatable about their respective second axes (C) parallel to and separate from the first axis (B) with respect to the first and second threaded elements (21, 20); the rollers (22) are also rotatable about the first axis (B) with respect to the first threaded element (21; 20) and the second threaded element (20; 21)
    • …
    corecore